摘要
针对异构云环境下科学工作流调度的代价优化问题,提出一种基于约束关键路径的代价优化调度算法(CSACCP)。算法以满足截止期限约束同时最小化执行代价为目标,充分考虑云环境和科学工作流的独有特性,设定任务的向上权值,将工作流分解成约束关键路径(CCP)集合。结合首次适应插入算法以减少空闲时隙,改善费用优化效果,采用及时完成和最小费用增长代价的虚拟机选择策略形成备选资源集合。整体分配CCP到最便宜的虚拟机实例,压缩数据通信开销减少工作流的执行代价。通过四种著名的科学工作流仿真测试,结果表明与现有启发式算法相比,CSACCP不仅可以在满足截止期限的约束下得到更小的执行代价,还拥有更高的任务调度成功率。
- 单位