摘要
基于接收信号强度指示(received signal strength indication, RSSI)测距的研究和应用领域很广泛,一直是物联网研究的热点.为降低传统基于反向传播(back propagation,BP)神经网络的RSSI测距误差,文中提出一种基于K-means聚类算法对样本数据进行预处理的BP神经网络测距算法,来解决由于RSSI值衰减程度不同引起的不同距离区间RSSI值和真实距离之间映射关系不均匀的问题.将K-means聚类算法应用于BP神经网络模型中,对样本数据进行距离区间划分,然后将已经分类好的数据分别输入BP神经网络建立网络模型并进行实验仿真.结果显示:传统基于BP神经网络的RSSI测距算法的均方根误差为1.425 7 m;而经过K-means算法改进后的BP神经网络测距算法的均方根误差为1.288 7 m,降低了测距误差,并优化了目标RSSI值与真实距离的映射关系.
-
单位通信与信息工程学院; 西安科技大学