摘要

为解决基于单图像噪声水平评估算法抗干扰能力低和执行效率不高的问题,提出一种基于多图像先验知识的噪声水平评估算法.首先,在具有广泛代表性且未受噪声干扰图像集合上添加已知噪声水平的高斯噪声构建失真样本图像集合,并提取每幅样本图像中的若干统计特征值构成描述他们噪声水平值高低的噪声水平感知特征矢量.然后,利用样本图像上所提取的特征矢量及对其所施加的噪声水平值构成样本库.在评估时,先提取待评价噪声图像的特征矢量并在样本库中检索出与之类似的若干特征矢量及它们所对应的噪声水平值,之后基于这些样本信息以加权均值法估算待评价图像的噪声水平值.实验数据表明:较现有的噪声水平评估算法,新算法不仅在高、中、低噪声水平下都具有稳定的预测准确度,而且评估速度快.尤其是对于高斯噪声中伴有脉冲或者泊松噪声情况,具有较好的抗干扰能力.