摘要
水文时间序列预测对于水文水利决策有着重要的意义。鉴于水文时间序列的复杂性,提出了一种水文时间序列的混合核PSO-KELM预测模型:将极限学习机(extreme learning machine,ELM)模型应用于水文时序预测研究,基于多核学习思想,构造由径向基核函数和多项式核函数加权构成的混合核函数,其综合了径向基核函数和多项式核函数的优点,并通过粒子群算法(particle swarm optimization,PSO)对模型的参数进行寻优,避免了人工操作造成的繁琐性和主观性。兰州站年径流量和金沟河流域年径流量实测数据被用来验证新模型合理性。通过两个算例表明:新模型能够获取比BP模型、RBF模型更好的结果。
-
单位重庆工程学院; 土木工程与建筑学院