摘要

虹膜识别是一种即时有效、被广泛应用的生物技术,其相对于人脸识别、指纹识别拥有更高的安全性能。但虹膜识别系统整体性能在很大程度上受虹膜分割精度的影响。为了有效提高虹膜识别系统性能即虹膜分割精度,本文在分析虹膜生理结构特点的基础上,大量阅读了国内外相关领域文献并分析各种算法优缺点,创新性地提出了一种新的虹膜精确分割算法,打破了传统分割算法中虹膜与瞳孔为同心圆的假设;借鉴完全局部二值模式CLBP算法思想,融合图像灰度信息和结构信息,创新性地提出了形状敏感的检测算子,有效剔除了影响分割精度的两大因素:眼睑和睫毛的干扰。同时提出了分割流程,分为两部分:虹膜粗分割与精确分割,粗分割包括外轮廓与瞳孔剔除,精分割包括眼睑与睫毛剔除。最后在中科院自动化所公开虹膜数据集CASIA-IrisV3-Interval和CASIA-IrisV1上进行了一系列有关精度和运算效率的对比实验。采用本文所提出的分割算法,在公开的OSIRIS Version 4.1虹膜识别系统上进行实验,其准确率分别提高到了97.14%和98.28%,运算时长显著减少并分别达到了0.699 s与0.758 s。

  • 单位
    哈尔滨工业大学(威海)