摘要
传统的市场风险度量模型没有充分利用期权与高频数据包含的信息,且主要基于单因子波动率模型,导致信息的损失以及模型缺乏足够的灵活性.本文基于灵活的双因子随机波动率模型,通过提取期权与高频数据包含的市场前瞻与当前信息,构建相应的市场风险度量波动率模型对在险值(VaR)进行度量.为了估计模型参数,建立基于连续粒子滤波的极大似然估计方法.采用iVX指数与已实现波动率测度(RV)作为上证50ETF期权与高频数据信息的代理,对构建的市场风险度量波动率模型进行了实证检验,结果表明:充分利用了期权与高频数据信息的双因子随机波动率模型能够在快速变化的市场环境中更好地估计波动率,相比其它波动率模型(仅利用了历史数据信息的GARCH模型、利用了高频数据信息的已实现GARCH模型以及利用了期权与高频数据信息的单因子随机波动率模型)具有更为优越的VaR度量精确性,尤其是极端风险情形下的VaR估计精确性改进明显,凸显了期权与高频数据信息以及双因子波动率在市场风险管理中的价值.
- 单位