如何提升数据可用性是机器学习应用在材料属性预测任务中的一大挑战。对此,提出了一种基于数据增广的小样本材料属性预测方法。针对公开发布的Matbench屈服强度属性预测任务,仅使用312个数据样本,应用全连接神经网络对属性进行预测。首先,去除降低模型性能的元素,提高数据质量;然后,使用线性插值扩充数据集;最后,对神经网络进行建模和训练,预测屈服强度属性。相比于最优基线模型MODNet,该方法的平均绝对误差降低了4.97%。