为了精准有效地实现永磁同步电机的温度预测,提出了一种基于近端策略优化(PPO)算法和强化学习(RL)网络的永磁同步电机温度预测模型,即PPO-RL模型,利用PPO算法定义模型训练的损失目标函数,选择Nadam算法作为模型优化器,通过强化学习的Actor-Critic框架最小化损失目标函数,进而完成模型的迭代训练。采用Kaggle公开的永磁同步电机测量数据集进行试验,结果表明,与指数加权移动平均法、循环神经网络和长短期记忆网络相比,PPO-RL模型具有更高的预测精度和可靠性。