摘要
在捷联惯导系统中,姿态信息通过惯性测量单元(Inertial measurement unit,IMU)器件来获取,主要包含三轴陀螺仪和三轴加速度计。然而,由于IMU传感器存在系统噪声、漂移误差,且这些误差会随着时间增加而积累,这使得姿态的精度控制变得困难。为了解决陀螺随时间漂移以及周围环境产生随机误差的问题,本文在卡尔曼滤波和神经网络模型的基础上,提出了一种基于小波神经网络——扩展卡尔曼滤波的姿态解算算法,对卡尔曼滤波的结果用小波神经网络予以模型优化,补偿扩展卡尔曼滤波自身存在的模型误差。半实物仿真实验结果表明,该算法提高了姿态解算精度,增强了对环境的自适应能力。
- 单位