摘要

共采集了112个番茄茎秆高光谱数据(光谱范围400~1 030nm),结合图像处理和化学计量学方法建立了番茄茎秆灰霉病早期诊断模型。应用偏最小二乘法(PLS)模型的隐含变量载荷分布选取了七个特征波长(EW),并建立了番茄茎秆灰霉病早期诊断的最小二乘支持向量机(LS-SVM)模型。结果表明,经过变量标准化(SNV)及多元散射校正(MSC)预处理所建立的EW-LS-SVM模型获得了满意的判别效果,且优于全波段的PLS模型。说明高光谱成像技术进行番茄茎秆灰霉病的早期诊断是可行的,为番茄病害早期诊断和预警提供了新的方法。