摘要

以混沌理论为基础,对三峡寸滩站月平均径流量时序曲线进行了相空间重构,确定了合理的饱和关联维数。与神经网络结合,用多维相空间建立了网络学习样本和教师值,构造了混沌神经网络分析模型。结果表明:流域年径流序列具有混沌性特征;混沌网络模型预测精度要高于标准BP网络模型,预测结果的绝对误差和相对误差均小于BP网络模型。