摘要
推荐算法是一种用于解决信息过载问题的方法,序列化推荐通过建模用户购买的物品序列预测下一个物品。现有的序列化推荐算法通常忽视用户行为序列中的噪声、跨序列信息和物品间的组合依赖等问题,导致推荐性能受限。为此,提出一种小波卷积增强的对比学习推荐算法WCLR。利用数据的内在相关性获得自监督信号,并根据预训练的方法来增强数据表示。给出3个辅助的自监督学习任务,利用信息最大化原理学习属性、物品、序列与邻居序列的相关性,通过互信息最大化提供一种统一的方式描述不同类型数据间的相关性。由于小波卷积网络能提取物品的组合依赖,降低用户交互序列中的噪声,设计一个多核小波卷积模块,通过多尺寸用户序列多方面捕获用户的潜在兴趣,将自监督学习和小波卷积融入到推荐算法模型中,降低序列数据稀疏性和噪声,提高推荐精度。在LastFM、Beauty和Toys 3个数据集上的实验结果表明,与8个序列化推荐模型相比,WCLR算法的命中率、归一化折损累计增益和平均倒数秩分别提升了3.30%、1.47%和2.17%。
- 单位