摘要
现有目标检测器特征金字塔无法充分利用不同尺度特征图的特征信息,不适用于低分辨率图像的目标和小目标的检测.针对此问题,文中提出引入通道注意力机制和残差学习块的目标检测器.首先引入通道全局注意力机制,通过网络学习特征图中不同通道特征的权重,增强有效的全局特征信息.然后采用轻量级的残差块,突出特征的微小变化,提高低分辨率图像中小目标的检测性能.最后在用于预测的浅层特征图中融合深层特征,提高小目标的检测精度.在标准测试数据集上的实验表明,文中目标检测器适用于低分辨率图像,对小目标的检测效果较优.
-
单位南昌航空大学; 江西省图像处理与模式识别重点实验室