摘要

协同过滤推荐是数据挖掘一个重要方向,传统协同过滤推荐算法受到数据稀疏性和冷启动制约,难以获得理想的推荐结果,为了改善协同过滤推荐的准确性,提出了基于用户历史行为的协同过滤推荐算法.首先根据用户的历史行为预测用户对每一个项目的偏好程度,并采用标签描述用户对项目的偏好程度,建立相应的特征向量,然后根据特征向量计算项目相似度实现个性化推荐,最后采用多个经典数据进行了仿真测试,以验证算法的优越性.测试结果表明,该算法大幅度降低了推荐的误差,提高了协同过滤推荐的准确率,克服了传统协同过滤推荐算法存在的局限性,而且可以加快推荐速度,具有更高的实际价值.

全文