摘要

旨在探索感染不同等级赤霉病的小麦中主要成分含量变化引起的傅里叶中红外光谱信息响应,并结合模式识别方法实现基于傅里叶变换中红外光谱的小麦赤霉病等级无损检测。以感染不同等级赤霉病小麦为研究对象,在4 000~400 cm-1波数范围内采集95个小麦样本的傅里叶中红外光谱数据,利用载荷系数法(XLW)与随机森林算法(RF)分析选取小麦样本傅里叶中红外光谱中的敏感波长,利用稀疏表示分类(SRC)算法建模识别小麦感染赤霉病等级。结果表明:XLW算法和RF算法选择的特征波长作为定性分析模型的输入时模型鉴别准确率与全波段光谱数据作输入时均达90%以上,特征波长提取算法可以有效简化模型并提高效率。RF-SRC模型鉴别效果最好,建模集鉴别准确率达97%,测试集鉴别准确率达96%。小麦感染赤霉病等级的不同会引起小麦中水分、淀粉、纤维素、可溶性氮素、蛋白质、脂肪等物质含量的变化,采用RF算法选择的特征波长均反映了这些物质所对应的傅里叶中红外光谱透射光谱特征的差异,结合SRC模型进行小麦赤霉病等级鉴别可达到最好的鉴别效果。因此,利用傅里叶中红外光谱技术结合模式识别方法对小麦赤霉病等级鉴别是可行的,解释了傅里叶中红外光谱技术检测小麦赤霉病等级的机理。