摘要

针对目前知识图谱中存在关系事实缺失且对隐含知识挖掘不足等问题,提出一种基于多级关系路径语义组合的关系推理算法。将知识图谱嵌入到低维向量空间中,利用强化学习进行路径发现,使得路径中实体和关系对应的向量作为循环神经网络的输入,经过迭代学习输出多级关系路径语义组合的结果向量,并将结果向量与目标关系向量进行相似度计算,从而进行关系推理。在FB15K-237和NELL-995数据集上的实验结果表明,该算法事实预测精度分别为0.314和0.417,均优于PRA、TransE与TransH模型。

全文