摘要
近年来,基于生物特征的身份认证在日常生活中扮演着至关重要的角色。多模态认证方法通过融合多种生物特征对用户进行身份认证,可以提供比单模态认证更高的安全性和认证准确性。然而,现有的多模态认证方案大多采用固定参数和规则的融合策略来实现认证,无法适应不同的认证场景,从而导致次优的认证性能。针对上述问题,提出了一种基于自适应粒子群优化算法的自适应分数级融合多模态认证方案。首先,方案根据上下文信息来确定当前认证场景所需的安全等级,接着自适应地选择融合策略的规则和参数,在提供安全身份认证的同时保证系统具有最佳的认证性能。其次,对采集的多模态生物特征数据进行预处理和特征提取,再使用所选择的最优融合策略来实现身份认证。最后,在公开的数据集上对自适应分数级融合的多模态认证方案进行实验分析,结果表明所提方案在真实数据上的可行性和有效性;在相同的认证安全等级下,本方案实现了比现有方案更小的全局错误率。
-
单位西安电子科技大学; 中国电子科技集团公司第三十研究所