摘要
相比小型卷积神经网络(convolutional neural network, CNN)模型,现有的大型CNN模型在大型图像数据集上达到了良好的分类效果,但是在小型图像数据集上过拟合,使得精度提升小、训练时间长、存储占用高,不能很好地适应嵌入式设备.因此首先收集了一个包含4 500张图片的小型蘑菇数据集,并为蘑菇分类任务设计了轻量化的CNN模型MushroomNet.然后研究CNN模型中各部分对于分类任务的重要性,并提出基于数据复杂度的模型结构优化方法.实验表明,相比MobileNet、ShuffleNet等轻量化模型,MushroomNet-MicroV2的Top-1精度只差了1%~2%,但是它训练速度更快,存储更小,只有1.3 M的参数量,且在Apple M1 CPU上经过142 s的30轮快速训练后,Top-1验证精度可达88%.
- 单位