摘要
针对传统手工提取特征方法需要专业领域知识,提取高质量特征困难的问题,将深度迁移学习技术引入到高分影像树种分类中,提出一种结合面向对象和深度特征的高分影像树种分类方法。为了获取树种的精确边界,该方法首先利用多尺度分割技术分割整幅遥感影像,并选择训练样本作为深度卷积神经网络的输入。为了避免样本数量少导致过拟合问题,采用迁移学习方法,使用ImageNet上训练的VGG16模型参数初始化深度卷积神经网络,并利用全局平局池化压缩参数,在网络最后添加1024个节点的全连接层和7个节点的Softmax分类器,利用反向传播和Adam优化算法训练网络。最后分类整幅遥感影像,生成树种专题地图。以安徽省滁州市的皇甫山国家森林公园为研究区,QuickBird高分影像作为数据源,采用本文方法进行树种分类。试验结果表明,本文方法树种分类总体精度和Kappa系数分别为78.98%和0.685 0,在保证树种精度的同时实现了端到端的树种分类。
- 单位