Itinerant and local-moment magnetism in EuCr2As2 single crystals

作者:Paramanik U B*; Prasad R; Geibel C; Hossain Z
来源:Physical Review B, 2014, 89(14): 144423.
DOI:10.1103/PhysRevB.89.144423

摘要

We report on the crystal structure, physical properties, and electronic structure calculations for the ternary pnictide compound EuCr2As2. X-ray diffraction studies confirmed that EuCr2As2 crystalizes in the ThCr2Si2-type tetragonal structure (space group I4/mmm). The Eu ions are in a stable divalent state in this compound. Eu moments in EuCr2As2 order magnetically below T-m = 21 K. A sharp increase in the magnetic susceptibility below Tm and the positive value of the paramagnetic Curie temperature obtained from the Curie-Weiss fit suggest dominant ferromagnetic interactions. The heat capacity exhibits a sharp.-shape anomaly at Tm, confirming the bulk nature of the magnetic transition. The extracted magnetic entropy at the magnetic transition temperature is consistent with the theoretical value R ln(2S + 1) for S = 7/2 of the Eu2+ ion. The temperature dependence of the electrical resistivity.(T) shows metallic behavior along with an anomaly at 21 K. In addition, we observe a reasonably large negative magnetoresistance (similar to -24%) at lower temperature. Electronic structure calculations for EuCr2As2 reveal a moderately high density of states of Cr-3d orbitals at the Fermi energy, indicating that the nonmagnetic state of Cr is unstable against magnetic order. Our density functional calculations for EuCr2As2 predict a G-type AFM order in the Cr sublattice. The electronic structure calculations suggest a weak interlayer coupling of the Eu moments.