摘要
使用现有深度学习算法重建云南天文台拍摄的高度模糊太阳斑点图像时,出现高频信息丢失、边缘模糊、重建难度大等问题。对此,提出一种结合门控融合网络与残差傅里叶变换的太阳斑点图重建算法,其中门控融合网络由一个生成器和两个鉴别器组成,生成器包含去模糊模块、高维特征提取模块、门控模块和重建模块。去模糊模块采用基于双注意力机制的U形网络框架,获取低分辨率图像去模糊后的特征;高维特征提取模块使用残差傅里叶变换的卷积块,提取包含图像空间细节的高维特征;门控模块将上述两个特征进行融合,得到权重图,与去模糊后的特征进行加权后,再与高维特征融合,得到融合特征;重建模块采用残差傅里叶变换的卷积块和像素混洗层,将门控模块得到的融合特征图进行重建,得到高分辨率图像。利用两个鉴别器分别鉴别去模糊模块产生的去模糊图像和重建模块产生的高分辨率图像的真实性。最后,设计包含像素内容损失、感知损失和对抗损失的组合训练损失函数,指导模型训练。实验结果显示,所提方法与现有深度学习重建方法相比,高频信息的恢复能力更强,边缘轮廓更清晰,结构相似性和峰值信噪比指标更高。
- 单位