摘要

提出了一种基于深度学习和人眼视觉特性的遥感图像质量评价方法。利用卷积神经网络和反向传播神经网络分类器,同时对遥感图像进行特征学习及模糊和噪声强度的等级分类。利用掩盖效应和感知加权因子修正评价模型,得到了更符合人眼视觉的遥感图像质量评价结果。研究结果表明,所提方法有效解决了同时存在模糊和噪声的遥感图像质量评价的困难,能有效准确地评价遥感图像的质量,且与主观评价结果有较好的一致性,更符合人眼视觉感受。

  • 单位
    中国人民解放军装备学院