摘要
具有超图交流结构的可转移效用合作对策,也称为超图对策,它由一个三元组(N,v,H)所组成,其中(N,H)是一个可转移效用对策(简称TU-对策),而(N,H)是一个超图(超网络)。在超图对策中,除Myerson值(Myerson)外,Position值(Meessen)是另一个重要的分配规则。该模型要求把超图结构中每条超边Shapley的值平均分配给它所包含的点,而不考虑每个点的交流能力或合作水平。本文引入超图结构中点的度值来度量每条超边中每个点的交流能力或合作水平,并结合Haeringer提出用于推广Shapley值的权重系统,并由此定义了具有超图合作结构的赋权Position值。我们证明了具有超图合作结构的赋权Position值可以由"分支有效性"、"冗余超边性"、"超边可分解性"、"拟可加性"、"弱积极性"和"弱能转换"六个性质所唯一确定,并且发现参与者获得的支付随其度值的增加而增加,参与者分摊的成本随其度值的增加而降低。
- 单位