摘要

肝脏计算机断层扫描成像(CT)的三维(3D)肝脏和肿瘤分割对于辅助医生的诊断及预后具有非常重要的临床价值。为了准确快速地分割肝脏及肿瘤区域,本文提出了一种基于条件生成对抗网络(cGAN)的肿瘤3D条件生成对抗分割网络(T3scGAN),同时采用了一个由粗到细的3D自动分割框架对肝脏及肿瘤区域实施精准分割。本文采用2017年肝脏和肿瘤分割挑战赛(LiTS)公开数据集中的130个病例进行训练、验证和测试T3scGAN模型。最终3D肝脏区域分割的验证集和测试集的平均戴斯(Dice)系数分别为0.963和0.961,而3D肿瘤区域分割的验证集和测试集的平均Dice系数分别为0.819和0.796。实验结果表明,提出的T3scGAN模型能够有效地分割3D肝脏及其肿瘤区域,因此能够更好地辅助医生进行肝脏肿瘤的精准诊断和治疗。