摘要

代理模型辅助的进化算法目前已广泛用于解决计算代价高的复杂优化问题.然而,大多数现有的代理辅助进化算法只适用于低维问题且仍然需要数千次昂贵的真实适应值评价来获得较优解.为此,提出一种基于多点加点准则的代理模型辅助的社会学习微粒群算法,用于解决高维问题并使用更少的评价次数.该算法选用高斯过程构造代理模型,以社会学习微粒群算法(SLPSO)作为优化器,提出一种基于相似度的多点加点规则(SMIC),用于选取需要使用原函数进行实际计算的候选解.在仿真实验中将该方法与现有研究成果进行比较,通过对50维~100维的基准函数的测试,验证了所提出算法在有限的适应值计算次数下拥有更好的寻优性能,尤其是在高维优化问题上拥有更显著的优势.

全文