摘要
肾脏肿瘤已经成为威胁人类健康的重要疾病之一。超声检查具有普及率高、价格低廉、无辐射等诸多优点,已广泛应用于肾脏肿瘤的诊断中。超声图像中肾脏肿瘤的准确分割是制定治疗方案的基础。肾脏肿瘤往往生长在肾皮质中间,分割容易受到周围脏器干扰,而且超声图像对比度低、斑点噪声严重,使得肿瘤分割困难。本文根据肾脏超声图像的特点,提出基于自适应分区演化水平集(ASLSM)的肿瘤分割算法。首先,将感兴趣区域图像分区;然后,融合内外能量项和梯度设计目标函数,并自适应调整二者比例;最后,根据质心原理和零水平集内外相似度自适应卷积半径及曲率,进行曲线演化。将本算法用于肾脏超声图像,实验结果中豪斯多夫距离(HD)为(8.75±4.21)mm,平均绝对距离(MAD)为(3.26±1.69)mm,戴斯系数(DICE)为0.93±0.03。与传统的方法进行比较,实验结果证明本算法可以获得更加准确的肿瘤分割结果,今后本算法或可为辅助医生定位和诊断肾脏肿瘤提供便利。
- 单位