摘要

为了有效地预测医院门诊量,充分考虑历史门诊量数据和工作日天数之间的关系,提出一种应用深度神经网络预测方法,深度神经网络模型由RBM层和预测层组成,采用无监督学习算法预训练网络参数,引入残差结构使输入信息跨层传输,利用反向学习算法微调网络参数,进而获取优化后的深度神经网络预测模型。实验结果表明,深度神经网络模型经过2层RBM训练之后,即可从原始样本中提取代表性较强的数据特征,所提方法在小样本数据下可以获得较好的预测精度,能够为医疗业务规划提供理论参考。