摘要

来自多源感知设备所采集的多模态交通数据,由于探测设备、网络、数据传输等错误往往存在丢失.交通数据的缺失对交通网络智能规划、避免拥堵等会产生重大的负面影响.同时,来自于不同平台数据的编码方式、标识存在差异,很大程度上影响了交通数据的利用.基于此,本文针对交通监控视频与车流量探测数据,结合张量理论,建立了用以描述多模态交通数据的张量模型,并提出了基于Tucker-Crossover的多模态数据补全算法(Tucker-Crossover based Multimodal Data Imputation Algorithm,TCM D-IA),用于多模态交通缺失数据的补全.该方法利用Tucker分解后不同阶的因子矩阵和核矩阵进行相关性融合,从而提高缺失值估计效果.在真实交通数据集上的实验表明,TCMD-IA的多模态交通缺失数据补全效果优于其他方法,且具有较好的鲁棒性.