摘要

本发明提供了一种基于正样本和无标签样本学习的图像语义分割方法,属于计算机视觉技术领域,其中方法包括:数据准备步骤、数据预处理步骤、深度卷积神经网络构建步骤、基于PU-Learning的损失函数设计步骤、损失函数的优化学习步骤,迭代执行训练步骤直至所述图像语义分割模型的训练结果满足预定收敛条件。本发明采用深度神经网络提取待分割的图像特征,在此基础上,本发明设计了一种基于PU-Learning的交叉熵损失函数,可以在只有部分像素级标注的情况下训练优化语义分割模型,本发明方案既可以端到端的训练优化语义分割模型,同时在一定程度上保留了像素级别的直接监督,在保证了良好的语义分割质量的同时,提升了数据的标注速度。