摘要
使用汽车雷达进行多目标跟踪时,为了提高航迹关联效率并改善非线性场景跟踪效果,提出了结合匈牙利指派和卡尔曼重要性采样的粒子滤波(Particle Filter with Kalman Importance Sampling,PF-KIS)算法。首先,将航迹关联分解为聚类和指派,通过密度聚类筛选并整合有效目标,经过匈牙利指派得到目标和航迹的最佳匹配关系,避免产生多余联合事件,提高关联效率;其次,以卡尔曼滤波的结果作为粒子滤波的先验,使采样粒子分布更合理,提高估计精度,进而改善非线性跟踪能力。实验表明,算法平均航迹关联正确率约为95%;非线性场景误差约为卡尔曼滤波的1/2,有效地改善了非线性场景跟踪能力。
- 单位