摘要

近年来,卷积神经网络(CNN)在图像识别和分类领域的高精度表现使其在机器学习领域受到了广泛关注.然而CNN的计算与访存密集特性给需要支持各种负载的通用处理器带来了巨大压力.因此,涌现了大量CNN专用硬件加速器.它们虽然提高了效率但却缺乏灵活性.基于新兴的RISC-V架构设计了包含10条矩阵指令的专用指令集RV-CNN.通过抽象典型CNN中的计算为指令,该指令集可灵活支持CNN推理过程并具有比通用ISA更高的代码密度.在此基础上,提出了代码至指令的映射机制.通过在XilinxZC702上使用该指令集构建不同网络模型后发现,相比于x86处理器,RV-CNN平均具有141倍的能效和8.91倍的代码密度;相比于GPU,平均具有1.25倍的能效和1.95倍的代码密度.另外,相比于以往的CNN加速器,该设计在支持典型CNN模型的同时仍具有不错的能效.

全文