摘要
为了给冬枣采收后成熟度分级提供理论指导,运用高光谱技术获取特征波长和计算光谱指数对其成熟度可视化分级。采集三类成熟度冬枣(未成熟果、白熟-初红果、半红-全红果)样本共336个并获取其高光谱信息,通过Savitzky-Golay(S-G)平滑对原始光谱降噪后再用Kennard-Stone(K-S)方法将样本分为训练集(226个)和测试集(110个)。选用连续投影法(SPA)和竞争性自适应重加权采样法(CARS)选择特征波长(CWs);同时从水果生理成分变化角度引入7个光谱指数(SIs)。基于SPA和CARS选取的CWs和引入的SIs分别建立偏最小二乘判别分析(PLS-DA)模型,并比较了3个模型的分级效果。结果表明:基于SPA和CARS选择的特征波长和引入的SIs建立的PLS-DA模型判别精度分别为:97.27%,95.45%和98.18%。为了直观展现判别结果,选用SIs建立的PLS-DA回归系数拟合判别向量Y的回归方程,依据Y中最大值元素所在类别为该样本预测类别的规则,将结果用不同颜色直观显示。该研究为冬枣成熟度可视化分级提供了思路,引入的SIs参数为开发适于多种水果成熟度分级的设备提供了技术支撑。
-
单位电子工程学院; 西北农林科技大学