摘要

为了提高对大气污染物SO2的预测准确率,基于多个空气质量预测模式(WRF-CHEM、CMAQ、CAMx),以过去一段时间内各单项空气质量预测模式的组合预测误差平方和最小为原则,构建出针对大气污染物SO2的最优定权组合预测模型.选取2018年云南省楚雄、昭通、蒙自三个站点1至5月份的实际观测数据和前述三个空气质量模式的预测数据作为实验样本,然后分别采用多元线性回归法和动态权重更新法在相同的实验条件下与所提的最优定权组合预测法进行预测对比实验.实验结果表明,所提方法的预测值相较其他两种方法更加贴近实际观测值,其两项误差评估指标值均最小.总体而言,最优定权组合预测模型很好地综合了各单项空气质量预测模式的优势,提高了SO2的预测精度.

全文