摘要
针对蝙蝠算法现存的缺点,如收敛速度慢、优化精确度低、早熟,提出一种基于遗传扰动机制的改进蝙蝠算法(GDBA).该优化算法引入了遗传竞争机制,通过比较与全局最优解的差异,随时调整遗传算法的交叉率和变异率,使得种群具有遗传性和多样性,解决了蝙蝠算法早熟的问题,同时加快了收敛速度,提高了优化精度.采用基准测试函数进行仿真验证,实验结果表明:与蝙蝠算法(BA)和基于速度权重扰动机制的改进蝙蝠算法(WDBA)相比,该算法(GDBA)具有更好的收敛速度和搜索精度,加强了寻找全局最优解的能力.
- 单位