摘要

针对共现像素-支持块模型(CPB)存在的问题,提出一种新的自更新像素共现模型(SU-CPB).引入经大规模监控场景训练的时空注意力模型(STAM),将STAM分割掩模作为指导,通过3种方法,包括像素-支持块对的动态选择,结构失效支持块的替换与前景相似度的计算,完成对支持块的在线自更新,解决CPB不具备更新能力带来的模型性能下降的问题,并使SU-CPB具备跨场景前景分割能力.实验结果表明,该方法在所有测试场景下均优于CPB,并在未经STAM训练的Wallflower与LIMU数据集下,显著优于单纯的STAM、CPB以及其他参与对比的方法.