摘要

针对光伏发电功率预测精度不高的问题,提出一种基于相似日理论和主成分分析(PCA)-粒子群算法(PSO)-BP神经网络的光伏发电功率预测模型。考虑不同季节下发电功率差异较大,通过灰色关联度选取预测日的相似日,采用主成分分析法对影响光伏发电功率的因素进行降维处理,利用降维后的相似日气象数据和历史发电功率数据来建立PSO-BP预测模型。试验验证,该方法与单一BP神经网络、PSO-BP预测模型相比,功率预测精度得到提高。

全文