摘要
为提高行人检测的检测性能,本文结合SqueezeNet、注意力机制、空洞卷积和Inception等结构,提出一种基于改进YOLOv4的行人检测算法.改进YOLO在特征增强部分引入残差连接和结合空洞卷积的注意力模块DCBAM,可以从提取到的特征中选择对目标检测重要的信息.此外,结合SqueezeNet的“squeeze-expand”结构和Inception网络的多尺度卷积思想提出Inception-fire模块用于替代网络中的连续卷积层,通过增加网络的宽度达到提升算法性能的效果,同时减少网络的参数.最后,根据行人检测任务的特点并结合Focal loss对损失函数进行改进,分别对正负样本和难易样本添加权重因子,强调对正样本和难分类样本的训练,从而提高网络的检测能力.改进的YOLO算法在INRIA行人数据集上的检测精度能够达到94.95%,相对原YOLOv4提高4.25%,同时参数量减少了36.35%,检测速度也获得13.54%的提升,在行人检测中能够表现出更优秀的性能.