摘要

协同过滤推荐算法主要是通过学习用户对商品过去所作出的偏好行为来为用户作出推荐,也就是协同过滤算法会对用户评分矩阵进行用户行为偏好学习,从而为用户作出相应的推荐。但是,由于用户评分矩阵具有极大的稀疏性,稀疏性会影响推荐算法的推荐结果.针对评分矩阵的稀疏性问题,文章利用主成分分析法,对用户原始评分矩阵首先进行降维处理,将原始评分矩阵转换到主成分空间上,缓解了评分矩阵的稀疏性,同时也降低了运算的时间复杂度.利用MovieLens数据库对算法进行了实验并和联合近邻权值算法进行了比较.结果表明,本文算法有较高的准确度和运行效率.