摘要

文章针对危化品道路运输事故预测问题,运用差分自回归移动平均模型(Autoregressive Integrated Moving Average, ARIMA)与局部加权回归模型(Locally Estimated Scatterplot Smoothing, LOESS)的组合模型,对我国危化品道路运输事故发生起数进行预测。首先,基于2011—2018年我国发生的危化品道路运输事故数据建立ARIMA模型,利用SPSS软件进行模型拟合预测,获取危化品道路运输事故起数的线性部分;其次,应用MATLAB建立LOESS回归模型,对ARIMA模型预测偏差进行残差优化,获取危化品道路运输事故起数的非线性部分;最后,建立ARIMA-LOESS组合模型,利用组合模型对危化品道路运输事故发生起数进行预测,并根据真实数据对预测结果进行对比验证。结果表明:ARIMA-LOESS组合预测模型可较好拟合危化品道路运输事故数据序列,并修正单一模型的误差,获取较高的预测精度。该研究可为危化品道路运输安全与运行的趋势分析与判断提供更加可靠的数据依据,也可为危化品道路运输事故防控方案提供帮助。