摘要
基于常规时频分析方法的跳频信号参数估计中,采用核函数抑制时频分布交叉项会导致时频聚集性的下降,不利于信号参数提取。针对此问题,该文提出一种基于稀疏时频分布(STFD)的跳频信号处理方法。该方法首先根据Cohen类分布的原理和跳频信号模糊函数的特点,以模糊域矩形窗为核函数,构建了一种Cohen类的矩形核分布(RKD)。RKD可有效抑制交叉项,但其时频分辨率较低。为提高RKD的时频性能,在压缩感知框架下,利用跳频信号时频分布的稀疏特性,对RKD附加稀疏性约束,建立稀疏时频分布(STFD)的优化求解模型。STFD不仅能有效抑制交叉项,而且具有良好的时频聚集性。仿真分析表明,与传统时频分析方法相比,该文提出的基于STFD的跳频信号参数估计方法性能更优。
-
单位电子工程学院; 西安电子科技大学