针对现有推荐与预测方法中存在的不足,提出了一种基于数据挖掘的社交网络信息推荐与预测方法.该方法在传统预测模型的基础上构建了双向社交网络推荐与预测框架,并在框架内整合了用户类别、行为和内容相似性特征构建广义的拓扑特征集合,通过协同过滤算法对用户的权重特征进行聚类分析,提升模型的预测效果.实验结果表明,该方法有效提升了静态数据环境下的挖掘精度.