摘要

针对湿地季节性变化特点和不同湿地类型植被覆盖的差异,综合利用多时相GF1-WFV和GF3-FSⅡ极化特征数据,开展湿地精细分类方法研究。首先,对13期GF1-WFV影像的光谱信息、植被指数和水体指数,利用随机森林算法(Random forests,RF)的OOB样本,优选出50个特征值,进行湿地初分类;然后,针对分类结果中沼泽草地、灌丛沼泽和沼泽地混分,部分湿地类型识别精度低的问题,利用1期植被生长旺盛期的GF3-FSⅡ双极化SAR影像,从强度和幅度两个维度进行后向散射特征分析,优选σFD-HH进行部分湿地类型识别;最后,以吉林省大安市为研究区进行实例验证与分析,结果表明,湿地分类总体精度为86. 23%,Kappa系数为0. 82。本文研究结果可以为湿地资源调查和管理提供技术支撑。