摘要
准确预测云资源短期负载对提高云平台资源管理效率、保障云服务质量至关重要。针对传统模型在面对小样本、非线性云资源负载数据时预测精度不高,提出一种基于变分模态分解(VMD)和改进麻雀搜索算法(ISSA)优化最小二乘支持向量机(LSSVM)的云资源短期负载预测模型。将原始负载数据通过VMD分解成多个相对平稳的模态分量;对麻雀搜索算法进行优化,增强种群多样性,提高寻优性能和收敛速度。利用改进麻雀搜索算法优化LSSVM的关键参数,建立VMD-ISSA-LSSVM预测模型。利用Wikipedia网站的云资源负载数据进行仿真,结果表明,所提模型在预测精度上优于参照模型。
- 单位