摘要

相位恢复是指从傅里叶变换或线性变换的幅值中恢复信号,广泛应用于物理科学、机器学习和工程等领域.由于相位信息的丢失导致该问题是病态的,而恢复原始信号一般需要信号的先验知识.本文已知信号稀疏性,提出了一种将Huber损失函数与加权L1正则项相结合的相位恢复方法.该方法运用Majorization-Minimization(MM)优化技术对目标函数进行优化,将原始非凸相位恢复问题转化为容易求解的替代优化问题,接着利用软阈值算子求解给出不动点方程,构造算法框架并进行收敛性分析.数值实验结果表明了加权L1-Huber方法的有效性和稳健性.

全文