摘要

为了减少虚假新闻给社会带来的负面影响,虚假新闻检测一直是自然语言处理中的一个重要领域。现有多模态虚假新闻检测方法通常使用预训练模型充当特征提取器,但是这些方法存在以下不足:(1)预训练模型参数在模型训练过程中总是会冻结,但预训练模型并不完美;(2)基于CNN (convolutional neural network)的图像特征提取器结构通常比基于Transformer的文本特征提取器结构更加复杂,图像特征通常被提前存储,使得这些模型的缺点被忽略。为此,本文提出基于端到端训练的多模态Transformer模型,通过使用视觉Transformer代替CNN提取图像特征,统一了不同模态的特征提取过程,利用共同注意力模块实现图像特征和文本特征交叉融合,并且在3个公开数据集上进行了对比实验。实验结果表明,本文模型性能超越了其他基线模型。