摘要

介绍了BP神经网络原理及算法并利用改进的BP神经网络算法对UY自由度机器人运动学反解问题进行了探讨。通过BP网络建立运动学模型,选择贝叶斯算法,采用Matlab神经网络工具箱进行编程,同时按照一定的范围要求提供样本,在试验及数值模型提供的样本数据范围内,得出模型测试精度都能满足工程要求。文章还进行了BP网络训练,并用训练好的网络来求解运动学逆问题,取得了较好的效果,为机器人运动学逆问题算法提供了新的思路,对机器人动力学问题、轨迹规划、运动控制也有一定的启发作用。