摘要
针对黄板诱捕的害虫体积小、数量多和分布不均匀,难以进行害虫识别的问题,引入当前主流目标检测模型Faster R-CNN对黄板上的小菜蛾、黄曲条跳甲和烟粉虱等主要害虫进行识别与计数,提出一种基于改进Faster R-CNN的田间黄板害虫检测算法(Mobile terminal pest Faster R-CNN,MPF R-CNN)。该算法将Res Net101网络与FPN网络相结合作为特征提取网络,并在RPN网络设计多种不同尺寸锚点对特征图像进行前景和背景判断,使用ROIAlign替代ROIPooling进行特征映射,以及使用双损失函数进行算法参数控制。对2 440幅样本图像的实验分析表明,在真实复杂的自然环境下,MPF R-CNN对烟粉虱、黄曲条跳甲、小菜蛾和其他大型害虫(体长大于5 mm)检测的平均精度分别为87.84%、86.94%、87.42%和86.38%;在35 cm×25 cm黄板上不超过480只的低密度下平均精度均值为93.41%,在480~960只害虫的中等密度下平均精度均值为89.76%。同时实验显示,在中低等密度下晴天和雨天的检测精度无明显差异,本算法计数结果与害虫计数决定系数为0.925 5。将该算法置入以"微信小程序+云存储服务器+算法服务器"为架构的小米7手机终端系统中进行应用测试,平均识别时间为1.7 s。研究表明,该算法在精度和速度上均可支持当前便携式应用,为利用手机对蔬菜害虫进行快速监测与识别提供了技术支撑。
- 单位