摘要

[Background] As a new solid-state photosensor, silicon photomultiplier (SiPM) has high gain (106), low power consumption (supply current is several μA), small size (several square milimeters), low operating voltage (less than 100 V) and other advantages. Compared with traditional photomultiplier tube, SiPM does not affected by magnetic fields. However, there is a disadvantage that the gain of SiPM is greatly affected by temperature, the gain will decrease by about 5×105 for every 10 °C rise in temperature, which will have a greater impact on energy spectrum measurement and radiation imaging applications. [Purpose] This study aims to design and develop a small programmable SiPM power supply for temperature independent gain. [Methods] First of all, a high-voltage power supply module was designed for SiPM, making use of the gain regulation by voltage. Temperature sensor, DC-DC power chip, etc., were integrated into an ARM-based micro control unit (MCU) module for automatic SiPM power supply. Then the effect of voltage compensation to gain in the temperature range of 5 ℃ to 40 ℃ was verified by using digital multi-channel analyzer with comparison of the channels of full energy peak on the energy spectrum of 241Am source. [Results] The channel of full energy peak which indicates the gain of the SiPM is stable by using the voltage compensation (gain drift correction), and the maximum drift of the SiPM gain from 5 ℃ to 40 ℃ decreases from 87.3% before compensation to 2.76%. [Conclusions] Gain drift correction achieved by a small intelligent programmable SiPM power supply broadens the scope of SiPM application.