摘要
针对城市道路场景下无人驾驶汽车最优轨迹生成算法存在的运行时间长、轨迹评价标准单一的问题,提出一种基于行车风险场优化采样区域的无人车轨迹规划方法。该方法通过改进的二维高斯分布函数分别建立静态障碍物和动态障碍物风险场模型,对道路中采样区域目标点的行车风险进行量化,通过卷积的方式选定行车风险较小区域的采样目标点生成最优轨迹。仿真结果表明,该优化方法在每个规划周期只选取部分采样目标点用于轨迹生成,提高了算法的运行效率,使得算法单帧运行时间均小于0.1 s。行车风险场的加入使得算法的采样区域更加符合驾驶人的行为习惯,提高了算法规划结果的拟人化程度,从而保证无人车具有较高的行驶效率。
- 单位