摘要

低碳铬铁合金冶炼是一种高耦合多相位的物理化学过程,磷是其工艺过程中影响铬铁合金产品质量的主要杂质之一。为实现降低磷含量并提高铬铁合金的产品质量,以神经网络预测理论为指导,以RBF人工神经网络作为AOD炉冶炼过程预测和系统辨识的途径,基于某铁合金公司的生产样本数据,建立了磷含量的神经网络在线预测平台,将其预测的输出值与实际样本值之间的灰色关联度作为研究的目标函数,并利用改进的粒子群算法(PSO)解决了一般RBF神经网络出现局部最优的问题,使得磷含量预测误差明显减少,实现了对磷含量的优化控制。研究结果表明,所建立改进的PSO优化预测控制模型精度提高到95.4%,分散度在±0.003%之内,为改进冶炼工艺、提高铬铁合金产品质量提供了重要的预测手段。